Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jing Xiang ${ }^{\text {a }}$ and

 Xiang-Cheng Lin ${ }^{\text {b }}$ *${ }^{\text {a }}$ Department of Chemistry, Shantou University, Guangdong 515063, People's Republic of China, and ${ }^{\text {b }}$ Center for Modern Analysis, Shantou University, Guangdong 515063, People's Republic of China

Correspondence e-mail: linxc_9@163.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.028$
$w R$ factor $=0.074$
Data-to-parameter ratio $=13.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Diammine[pyridine-2,6-dicarboxylato$\left.\kappa^{3} O^{2}, N, O^{6}\right]$ zinc (II)

The title complex, $\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)\left(\mathrm{NH}_{3}\right)_{2}\right]$, was prepared by a hydrothermal reaction at 413 K . The complex has mirror symmetry. The $\mathrm{Zn}^{\mathrm{II}}$ ion is coordinated by a tridentate pyridinedicarboxylate dianion and two ammonia molecules, in a distorted trigonal-bipyramidal coordination geometry. An intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding network stabilizes the crystal structure.

Comment

Pyridine-2,6-dicarboxylic acid ($\mathrm{H}_{2} \mathrm{PDC}$) is widely used to construct metal-organic frameworks. We present here the structure of the title complex, (I), in which PDC plays the role of a tridentate ligand.

(I)

The molecular structure of (I) is shown in Fig. 1. The $\mathrm{Zn}^{\mathrm{II}}$ complex has mirror symmetry. The $\mathrm{Zn}^{\mathrm{II}}$ ion is coordinated by a tridentate PDC dianion and two ammonia molecules, in a distorted trigonal bipyramidal coordination geometry. In the axial direction, the $\mathrm{Zn}-\mathrm{O} 1$ bond distance is significantly shorter than the $\mathrm{Zn}-\mathrm{O} 3$ distance. The three $\mathrm{Zn}-\mathrm{N}$ bond distances in the equatorial plane are nearly the same (Table 1).

Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between ammonia molecules and carboxylate groups (Table 2) stabilizes the crystal structure of (I).

Experimental

$\mathrm{H}_{2} \mathrm{PDC}(0.083 \mathrm{~g}, 0.5 \mathrm{mmol})$ and concentrated ammonia (1 ml) were added to an aqueous solution (15 ml) of $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(0.143 \mathrm{~g}$, 0.5 mmol). The mixture was placed in a 25 ml Teflon-lined Parr bomb and heated at 413 K for 38 h . The bomb was then cooled to room temperature at $5 \mathrm{~K} \mathrm{~h}^{-1}$. Crystals were obtained in about 37% yield. Analysis calculated for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Zn}$: C $31.78, \mathrm{H} 3.43$, N 15.88%; found: C 31.66, H 3.60, N 15.92%. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3367 (m), 3071 (w), 1610 ($v s), 1566(m), 1470(s), 1420(s)$.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)\left(\mathrm{NH}_{3}\right)_{2}\right]$
$M_{r}=264.56$
Orthorhombic, Pbcm
$a=10.4696$ (9) \AA
$b=12.6989$ (11) A
$c=7.2309$ (6) A
$V=961.37(14) \AA^{3}$
$Z=4$
$D_{x}=1.828 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker APEX area-dectector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.390, T_{\text {max }}=0.530$
5637 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.074$
$S=1.16$
1244 reflections
89 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{N} 1$	$2.0154(19)$	$\mathrm{Zn} 1-\mathrm{O} 1$	$2.139(2)$
$\mathrm{Zn} 1-\mathrm{N} 2$	$2.0039(15)$	$\mathrm{Zn} 1-\mathrm{O} 3$	$2.2891(16)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{O} 1$	$77.45(7)$	$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{O} 3$	$96.94(5)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{O} 3$	$74.76(7)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 3$	$152.21(6)$
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 2$	$127.12(5)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 2$	$99.75(5)$
$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{N} 2^{\mathrm{i}}$	$105.58(9)$		

Symmetry code: (i) $x, y,-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\text {iii }}$	0.89	2.23	$3.050(2)$	153
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O}^{\text {iii }}$	0.89	2.15	$3.011(2)$	162
$\mathrm{~N} 2-\mathrm{H} 2 C \cdots \mathrm{O}^{\text {iv }}$	0.89	2.32	$3.123(2)$	150
Symmetry codes: (ii)	$-x+1, y+\frac{1}{2},-z+\frac{1}{2} ;$	(iii)	$-x+2,-y+1,-z+1 ;$	(iv)
$-x+1,-y+1,-z+1$.				

Methyl H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ $0.89 \AA$, and refined to fit the electron density, with $U_{\text {iso }}(\mathrm{H})=$

Figure 1
The molecular structure of (I), shown with 50% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (A) x, y, $\left.\frac{1}{2}-z\right]$.
$1.5 U_{\text {eq }}(\mathrm{C})$. Aromatic H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: $S M A R T$ (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Research Foundation of the Education Department of Guangdong Province (No. Z03034)

References

Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

